Decompositions of Laurent Polynomials

نویسنده

  • MICHAEL E. ZIEVE
چکیده

In the 1920’s, Ritt studied the operation of functional composition g ◦ h(x) = g(h(x)) on complex rational functions. In the case of polynomials, he described all the ways in which a polynomial can have multiple ‘prime factorizations’ with respect to this operation. Despite significant effort by Ritt and others, little progress has been made towards solving the analogous problem for rational functions. In this paper we use results of Avanzi–Zannier and Bilu–Tichy to prove analogues of Ritt’s results for decompositions of Laurent polynomials, i.e., rational functions with denominator x.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms for the Functional Decomposition of Laurent Polynomials

Recent work has detailed the conditions under which univariate Laurent polynomials have functional decompositions. This paper presents algorithms to compute such univariate Laurent polynomial decompositions efficiently and gives their multivariate generalization. One application of functional decomposition of Laurent polynomials is the functional decomposition of so-called “symbolic polynomials...

متن کامل

Explicit factors of some iterated resultants and discriminants

In this paper, the result of applying iterative univariate resultant constructions to multivariate polynomials is analyzed. We consider the input polynomials as generic polynomials of a given degree and exhibit explicit decompositions into irreducible factors of several constructions involving two times iterated univariate resultants and discriminants over the integer universal ring of coe cien...

متن کامل

Addendum to: "Infinite-dimensional versions of the primary, cyclic and Jordan decompositions", by M. Radjabalipour

In his paper mentioned in the title, which appears in the same issue of this journal, Mehdi Radjabalipour derives the cyclic decomposition of an algebraic linear transformation. A more general structure theory for linear transformations appears in Irving Kaplansky's lovely 1954 book on infinite abelian groups. We present a translation of Kaplansky's results for abelian groups into the terminolo...

متن کامل

8 N ov 2 00 4 Lower - upper triangular decompositions , q = 0 limits , and p - adic interpretations of some q - hypergeometric orthogonal polynomials Tom

For little q-Jacobi polynomials, q-Hahn polynomials and big q-Jacobi polynomials we give particular q-hypergeometric series representations in which the termwise q = 0 limit can be taken. When rewritten in matrix form, these series representations can be viewed as decompositions into a lower triangular matrix times upper triangular matrix. We develop a general theory of such decompositions rela...

متن کامل

decompositions , q = 0 limits , and p - adic interpretations of some q - hypergeometric orthogonal polynomials

For little q-Jacobi polynomials, q-Hahn polynomials and big q-Jacobi polynomials we give particular q-hypergeometric series representations in which the termwise q = 0 limit can be taken. When rewritten in matrix form, these series representations can be viewed as decompositions into a lower triangular matrix times upper triangular matrix. We develop a general theory of such decompositions rela...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008